January 12th 2024: We have uncovered an altered DNA repair activity in H3.3 mutant pediatric high-grade glioma that fosters genome instability independently of previously described oncogenic pathways. Furthermore, we have identified a DNA repair enzyme that sustains the proliferation of cells bearing H3.3 mutations, thus conferring a specific molecular vulnerability with potential for therapeutic targeting. We thank all our collaborators on this work for their great contributions. See Giacomini et al., Nucleic Acids Res, 2024.
À lire aussi
EDC15: Fifteen Years of Epigenetics and Cell Fate
The Epigenetics and Cell Fate Center celebrates its fifteen years of existence on October 8, 2024. Come, and join us for this special day! This conference will look back on 15 years of scientific advances in the fields of epigenetics and cellular differentiation in...
2024 Young Scientists Day
It’s time to create our own network! The 27th of June young scientists from BFA (Biologie Fonctionelle Adaptative), IJM (Institut Jacques Monod) and us (EDC) will meet to share amazing science and create the foundations of future collaborations...
Call for new Research Group Leaders
The Epigenetics and Cell Fate Centre is seeking to recruit two talented junior and/or senior group leaders.Download the call (.pdf) Download the application form (.doc) The Epigenetics and Cell Fate Centre is a leading institute exploring cell identity and...
Congratulations Dr Carrillo
Congratulations to Léo who defended his thesis work on " Exploring the link between X chromosome inactivation and the development of human extraembryonic tissues " . © Rougeulle team À lire aussi