January 12th 2024: We have uncovered an altered DNA repair activity in H3.3 mutant pediatric high-grade glioma that fosters genome instability independently of previously described oncogenic pathways. Furthermore, we have identified a DNA repair enzyme that sustains the proliferation of cells bearing H3.3 mutations, thus conferring a specific molecular vulnerability with potential for therapeutic targeting. We thank all our collaborators on this work for their great contributions. See Giacomini et al., Nucleic Acids Res, 2024.
À lire aussi
New research article on how chromatin marking governs DNA damage segregation in mitosis
In this paper, we uncover a damaged chromatin marking mechanism that drives the non-random segregation of UV damage through mitosis with potential consequences on daughter cell fate. Thus, we reveal that chromatin alterations impinge on genome stability not only by...
Welcome to Julia
Julia Roche Dupuy joined the lab for her second year Master's internship. Julia Roche Dupuy Second year Master's student À lire aussi
Welcome Caroline to our team!
We're excited to have Caroline joining Dr. Ait-si-Ali's team! She comes to us as an M2 student from the GENE2 master's program at Université Paris-Saclay. Working with Dr. Guillaume Velasco, Caroline will study the regulation of nuclear stiffness by H3K9...
Welcome Minh to Slimane Ait-si-ali’s team!
We are delighted to welcome Mynh, an M2 student from the GENE2 master's program at Université Paris-Saclay, to Dr. Ait-si-Ali's team. Mynh will be investigating the role of SETDB1 in Duchenne muscular dystrophy phenotype development.